
Presentation (Page 1 of 26)

TOWN OF CUTLER BAY TRAFFIC IMPACT ANALYSIS METHODOLOGY

Calvin, Giordano & Associates, Inc.

EXCEPTIONAL SOLUTIONS[™]

OVERVIEW

- Background
- Discussion of Methodology
- Conclusions and Recommendations

The purpose is to provide a generally uniform methodology for identifying potential traffic impacts of new development and redevelopment on the transportation system in the Town of Cutler Bay (the Town). The intent is to identify the effect on road and intersection levels of service that is due solely to the project's impact, distinct from level of service issues that may currently exist or develop over time without the project.

- Currently traffic impact analysis methodology is negotiated at study outset.
- The different Town reviewers may differ in the analysis elements they require.
- The Methodology Guidelines provide a more predictable process and outcome.
- The intent is for Town staff to conduct the traffic impact analyses according to the guidelines.
- The guidelines rely on recognized analysis techniques and data sources.

The Highway Capacity Manual 6th ed., March, 2016.

The National Academy of Sciences (NAS) was established by Congress in 1863 and is a private, nongovernmental institution to advise the nation on issues related to science and technology.

The Transportation Research Board (TRB) is one of seven major programs of the NAS. Its varied committees, task forces, and panels annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia.

The TRB published the first Highway Capacity Manual (HCM) in 1950.

The ITE Trip Generation Manual (10th ed.) and Trip Generation Handbook (3rd ed.), September 2017

The Institute of Transportation Engineers (ITE):

An international educational and scientific association of transportation professionals founded in 1930. Currently 17,000 members in 90 countries. ITE facilitates the application of technology and scientific principles.

METHODOLOGY

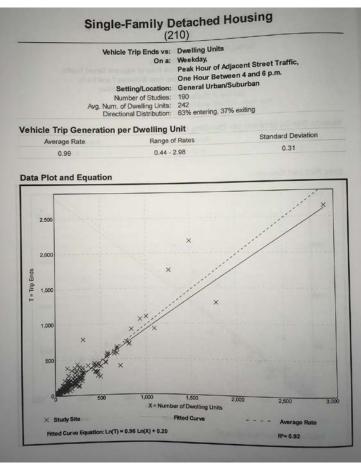
METHODOLOGY GUIDELINES MAJOR SECTIONS:

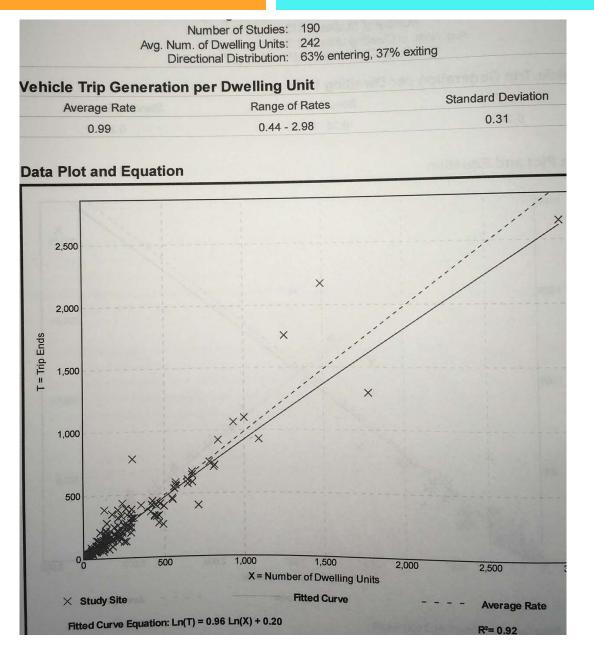
Trip Generation Distribution and Assignment Study Area Limits Analysis Scenarios Analysis Periods Data Collection Demand Volumes

Cutler Bay

Level of Service Standards Roadway Segment Analysis Intersection Analysis Software Site Access Multimodal Considerations Mitigation of Impacts

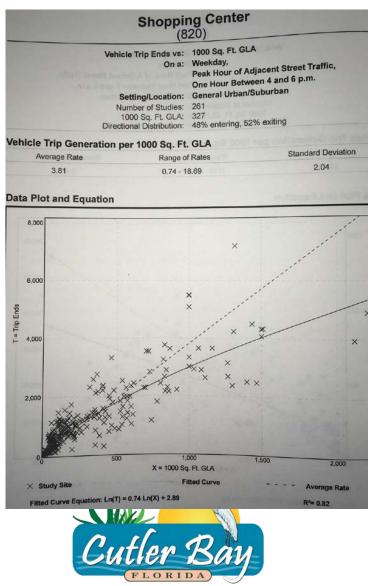
TRIP GENERATION


- Latest edition of the ITE Trip Generation Manual and Trip Generation Handbook.
- Internal Capture allowed for complementary land uses.
- Pass-by Trip Capture allowed for certain restaurant and retail uses.
- Diverted Trip Capture not allowed.
- Non-ITE rates allowed if two sites within Miami-Dade County studied according to ITE guidelines.
- Credit given for trips from prior uses if operational in the last 12 months.



Presentation (Page 9 of 26)

TRIP GENERATION



Presentation (Page 10 of 26)

TRIP GENERATION

Average Rate	on per 1000 Sq. Ft. GLA Range of Rates	Standard Deviation
3.81	0.74 - 18.69	2.04
Data Plot and Equation	on	of mid Equation
8,000		
X	×	and the second sec
6,000	×	1
Trip Ends 4'000	×	
₩ 4,000	× × × × × ×	
×	× × × × × × × × × × × × × × × × × × ×	
2,000	×	
	×××××	
00	500 1,000 1,5	00 2,000

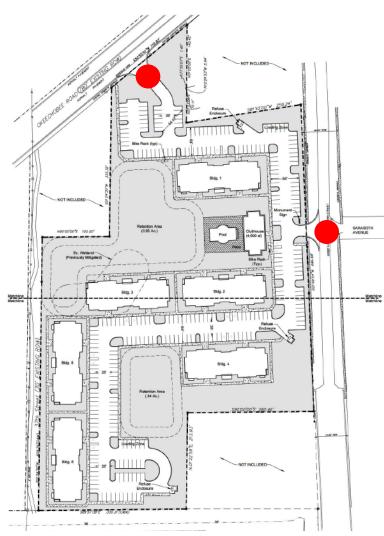
10

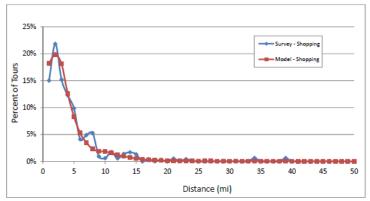

CE

DISTRIBUTION AND ASSIGNMENT

- Latest edition of the Directional Trip Distribution Report
- Based on the Southeast Florida Regional Planning Model (SERPM), which simulates travel demand in three counties.
- Distribution pattern for each Traffic Analysis Zone (TAZ), a geographic area used in SERPM to represent land use. Must be modified to best suit street

pattern.




DISTRIBUTION AND ASSIGNMENT - CONT'D.

- Exceptions allowed if supported by data (eg. School).
- Trip Attenuation usually ignored.
- Driveway distribution must reflect the site plan.

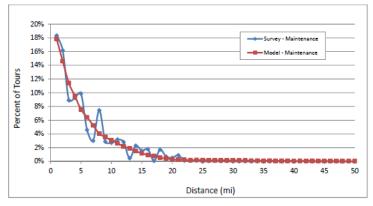


Figure 28: Shopping Tour Length Frequency Distribution

Figure 29: Maintenance Tour Length Frequency Distribution

STUDY AREA LIMITS

- De-minimis impact: Project traffic consumes less than 1% of the road's minimum standard capacity. Traffic memo demonstrating this is required.
- Studied road segments:
 - Road segment that serves the project; and
 - All road segments where project traffic consumes more than 3% of the road's minimum standard capacity.
- Studied intersections: the intersections on the studied road segments and all site driveways.

ANALYSIS SCENARIOS

- Existing Conditions
- Future Background
- Future Background plus Project

ANALYSIS PERIODS

- Peak hours of background traffic on typical weekday mornings and afternoons.
- Other periods if significant project traffic generation.

DATA COLLECTION

- Typical traffic conditions: Tuesday Thursday, during normal school operation, outside holiday periods and special events.
- 72 Hour road volume counts.
- Used to identify the peak period of the intersections.
- 2 hours of turning movement counts in each peak period.
- Measuring the intersection approach volume behind the queue.
- Existing counts up to one year old acceptable.
- Other data: geometry, signal timing, crash history, video imagery, count trend history, etc.

Presentation (Page 16 of 26)

DEMAND VOLUMES

- Existing Conditions:
 - Traffic counts are adjusted to peak season conditions.
 - FDOT Peak Season
 Factor Category
 (PSFC) Reports

2018 PEAK SEASON FACTOR CATEGORY REPORT - REPORT TYPE: COUNTY CATEGORY: 8701 MIAMI-DADE SOUTH

WEEK	DATES	SF	MOCF: 0.96 PSCF
1 2 3 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 18 20 21 22 23 24 25 26 27 28	01/01/2018 - 01/06/ 01/07/2018 - 01/13/ 01/14/2018 - 01/20/ 01/21/2018 - 01/27/ 01/28/2018 - 02/03/ 02/04/2018 - 02/10/ 02/11/2018 - 02/17/ 02/18/2018 - 02/24/ 02/25/2018 - 03/03/ 03/04/2018 - 03/10/ 03/11/2018 - 03/11/ 03/18/2018 - 03/24/ 03/25/2018 - 03/24/ 03/25/2018 - 03/24/ 03/25/2018 - 03/24/ 03/25/2018 - 03/24/ 04/01/2018 - 04/27/ 04/08/2018 - 04/28/ 04/22/2018 - 04/28/ 04/29/2018 - 05/05/ 05/06/2018 - 05/12/ 05/13/2018 - 05/19/ 05/20/2018 - 05/26/	2018 1.01 2018 1.01 2018 1.00 2018 0.99 2018 0.99 2018 0.98 2018 0.96 2018 1.01 2018 1.02 2018 1.03 2018 1.04 2018 1.04 2018 1.04 2018 1.04 2018	PSCF 1.05 1.05 1.04 1.03 1.02 1.01 1.00
30	07/22/2018 - 07/28/		1.08

Presentation (Page 17 of 26)

DEMAND VOLUMES CONT'D.

- Future Background:
 - Count trend history used to inflate existing counts to future year.
 - Minimum growth of 0.5% annually.
 - Limited use of growth rate averages.
- Future Background plus Project: adds the project traffic.

2013 AADT	2018 AADT	Annual Compound Growth	Adjusted Annual Compound Growth
19100	15700	-3.85%	-3.85%
37500	33000	-2.53%	-2.53%
5200	6600	4.88%	4.88%
Compound	Growth Ra	te	-0.50%

LEVEL OF SERVICE STANDARDS

- Adopted Standard (LOS D or E) from the Town's Growth Management Plan.
- Peak Hour Two-Way Service Volume from the latest edition of the FDOT Generalized Service Volume Tables.
- Intersection LOS Standard aligns with the more relaxed (E vs. D) of the intersecting road standards.

Generalized Peak Hour Two-Way Volumes for Florida's										
TABLE 4	anized Areas ¹									
INTER	RUPTED FLOW FACI	LITIES		12/18/12 UNINTERRUPTED FLOW FACILITIES						
			_							
Class I (40 Lanes Median 2 Undivided 4 Divided 6 Divided 8 Divided	IGNALIZED ART mph or higher posted s B C * 1,510 * 3,420 * 5,250 * 7,090 5 mph or slower posted s B C * 660 * 1,310 * 2,090 * 2,880	peed limit) D 1,600 3,580 5,390 7,210	E ** ** E 1,410 3,040 4,590 6,130	FREEWAYS Lanes B C D E 4 4,120 5,540 6,700 7,190 6 6,130 8,370 10,060 11,100 8 8,230 11,100 13,390 15,010 10 10,330 14,040 16,840 18,930 12 14,450 18,880 22,030 22,860 Freeway Adjustments Auxiliary Lanes Ramp Metering + 1,800 + 5%						
(Alte	ignalized Roadway A r corresponding state volut by the indicated percent.) Signalized Roadways	nes	;							
Lanes Median 2 Divided 2 Undivided Multi Undivided One Multiply	& Turn Lane Adjus Exclusive Exclu- Left Lanes Right I Yes No No No No Yes No No No - Yee Way Facility Adjusti the corresponding two-dir plumes in this table by 0.0	sive Adju anes Fa -2 -2 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	15tment 1ctors -5% 20% 5% 25% -5%	UNINTERRUPTED FLOW HIGHWAYS Lanes Median B C D E 2 Undivided 770 1,530 2,170 2,990 4 Divided 3,300 4,660 5,900 6,530 6 Divided 4,950 6,990 8,840 9,790 Uninterrupted Flow Highway Adjustments Lanes Median Exclusive left lanes Adjustment factors 2 Divided Yes +5%6 Multi Undivided No -25%6						
(Multiply motorize directional roadway Paved Shoulder/Bic Lane Coverage 0.49% 50.84% 85-100% PE (Multiply motorized directional roadway Sidewalk Coverag 0.49% 50.84%	B C * 260 190 600 830 1,770 DESTRIAN MOD I vehicle volumes shown bo lanes to determine two-way volumes.) se B C * * * 150	D B B B B B B B B B B B B B	vice E 1,770 >1,770 ** r of vice E 850 1,420	¹ Unhose thourn are presented as peak hour two-way volumes for levels of service and are for the submobile truck modes unless specifically stated. This table does not constitute a standard and should be used only for general planning applications. The computer models from which this table is deriving computer models thould not be used for rounded or interaction dosign, where more refined techniques with Calculations are based on planning applications of the Highway Capacity Manual and the Transit Capacity and Quality of Service Manual. ² Level of services for the bicycle and podestrian modes in this table is based on number of motorized vehicles, not number of bicyclists or pedestrians using the facility. ³ Bases per hour shown are only for the peak hour in the single direction of the higher traffic flow. ⁴ Cannot be achieved using table input value default. ⁴⁴ Not applicable for that level of service is ther grade. For the automobile mode, how means that here is no maximum vehicle volume threaked luting table input value default.						
	340 960 DE (Scheduled Fixe in peak hour in peak direc ge B C $> 5 \ge 4$ $> 4 \ge 3$	d Route) ³	≥1,770 E ≥2 ≥1	Source: Forida Department of Transportation System Planning Office www.dot.ets.f.u.iphanning/system/inu/log/default.shtm						

Constrained Post Hour Two-Way Volumos for Elevida's

2012 FDOT QUALITY/LEVEL OF SERVICE HANDBOOK TABLES

ROADWAY SEGMENT ANALYSIS

- Interrupted Flow Facilities include intersection delays
- Level of Service (LOS) measure is average travel speed compared with free flow speed.

	Trave	I Speed T	hreshold	by Base F	ree-Flow	Speed (I	mi/h)
LOS	55	50	45	40	35	30	25
А	>44	>40	>36	>32	>28	>24	>20
В	>37	>34	>30	>27	>23	>20	>17
С	>28	>25	>23	>20	>18	>15	>13
D	>22	>20	>18	>16	>14	>12	>10
E	>17	>15	>14	>12	>11	>9	>8
F	≤17	≤15	≤14	≤12	≤11	≤9	≤8

Highway Capacity Manual 6th ed., Exhibit 18-1

ROADWAY SEGMENT ANALYSIS CONT'D.

- Initial: Generalized Service Volume Tables
- FDOT ARTPLAN crude estimation of intersection delay
- Synchro sophisticated intersection analysis software
- Add Synchro intersection delays to segment travel times to determine average travel speed and LOS.

 Boadway
 Direction
 Distance
 Link Travel
 Intersection
 Total Delay
 Average
 Arterial

Roadway	Direction	Intersection	Distance (mi)	Link Travel (s/veh)	Intersection Delay ² (s/veh)	Total Delay (s/veh)	Average Speed (mph)	Arterial LOS
		SW 216 th Street	-	-	-	-	-	-
	NEB	Gulfstream / SW 97 th Avenue	0.4	41.14	27.7	68.84	20.9	С
Old Cutler Road —	NED	Marlin Road	0.3	30.86	5.3	36.16	29.9	А
		Total	0.7	72.00	33.00	105.00	24.0	в
	SWB	Marlin Road	-	-	-	-	-	-
		Gulfstream / SW 97 th Avenue	0.4	41.14	13.2	54.34	26.5	в
		SW 216 th Street	0.3	30.86	25.6	56.46	19.1	С
		Total	0.7	72.00	38.8	110.80	22.7	с

INTERSECTION ANALYSIS

- Synchro software consistent with HCM latest edition
- LOS measure is delay in seconds
- Analysis to report LOS, delay, and queues

	LOS by Volume-to-Capacity Ratio ^a				
Control Delay (s/veh)	≤1.0	>1.0			
≤10	А	F			
>10-20	В	F			
>20-35	С	F			
>35-55	D	F			
>55-80	E	F			
>80	F	F			

Note: ^a For approach-based and intersectionwide assessments, LOS is defined solely by control delay.

Highway Capacity Manual 6th ed., Exhibit 19-8

	٨	-+	7	4	+	*	*	t	1	7	t	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	+	×.	۲	† Ъ		5	fЪ		٦	+	
Traffic Volume (veh/h)	42	378	161	73	376	74	198	361	108	37	117	17
Future Volume (veh/h)	42	378	161	73	376	74	198	361	108	37	117	17
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qk), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	45	406	173	78	404	80	213	388	116	40	126	18
Adj No. of Lanes	1	1	1	1	2	0	1	2	0	1	1	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	413	554	674	344	935	184	482	640	189	314	282	240
Arrive On Green	0.05	0.30	0.30	0.07	0.32	0.32	0.13	0.24	0.24	0.04	0.15	0.15
Sat Flow, veh/h	1774	1863	1583	1774	2951	579	1774	2695	797	1774	1863	1583
Grp Volume(v), veh/h	45	406	173	78	241	243	213	253	251	40	126	18
Grp Sat Flow(s),veh/h/ln	1774	1863	1583	1774	1770	1760	1774	1770	1722	1774	1863	1583
Q Serve(g_s), s	0.9	9.9	3.6	1.5	5.4	5.5	4.7	6.4	6.6	0.9	3.1	0.5
Cycle Q Clear(g_c), s	0.9	9.9	3.6	1.5	5.4	5.5	4.7	6.4	6.6	0.9	3.1	0.5
Prop In Lane	1.00		1.00	1.00		0.33	1.00		0.46	1.00		1.00
Lane Grp Cap(c), veh/h	413	554	674	344	561	558	482	420	409	314	282	240
V/C Ratio(X)	0.11	0.73	0.26	0.23	0.43	0.44	0.44	0.60	0.61	0.13	0.45	0.07
Avail Cap(c_a), veh/h	630	2086	1977	526	1982	1972	553	1631	1588	537	1717	1460
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	11.4	15.9	9.3	11.8	13.6	13.7	13.7	17.1	17.2	16.8	19.5	18.4
Incr Delay (d2), s/veh	0.1	1.9	0.2	0.3	0.5	0.5	0.6	1.4	1.5	0.2	1.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	5.4	1.6	0.7	2.7	2.7	2.3	3.3	3.2	0.5	1.7	0.2
LnGnp Delay(d),s/veh	11.5	17.8	9.5	12.1	14.1	14.2	14.3	18.5	18.7	17.0	20.6	18.5
LnGrp LOS	В	B	A	В	В	В	В	В	В	В	С	В
Approach Vol, veh/h		624			562			717			184	
Approach Delay, s/veh		15.1			13.9			17.3			19.6	
Approach LOS		В			В			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.8	19.5	11.0	12.1	6.8	20.5	6.6	16.5				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	8.5	56.5	8.5	46.5	8.5	56.5	8.5	46.5				
Max Q Clear Time (g_c+l1), s	3.5	11.9	6.7	5.1	2.9	7.5	2.9	8.6				
Green Ext Time (p_c), s	0.1	3.1	0.1	0.8	0.0	3.0	0.0	3.4				
Intersection Summary												
HCM 2010 Ctrl Delay			15.9									
HCM 2010 LOS			В									

Synchro 10 Report

(E)

SOFTWARE

- Results consistent with latest edition of the HCM
- FDOT spreadsheet tool ARTPLAN
- Synchro for most intersections including roundabouts
- SIDRA for some roundabouts

SITE ACCESS AND MULTIMODAL CONSIDERATIONS

- Not analysis methodology
- Checklist of design issues affecting driveways, transit users, bicyclists and mobility service providers.

MITIGATION OF IMPACTS

- Restore to Adopted Standard in the Future plus Project Scenario.
- Proportionate Share Mitigation method to distribute the cost of needed improvements among projects that consume only a small portion of the capacity being added by the considered improvement.

CONCLUSION

- Historically, applicant's consultant performed the analysis for review by town staff.
 Different reviewers set the methodology for each study.
- Methodology Guidelines ensure that recognized techniques and data are used to perform analyses in the Town of Cutler Bay.
- Provides consistency and predictability in the process and outcome.
- Per Resolution 19-38 the Town will conduct the traffic study, according to these guidelines.
- Fair, efficient process.

QUESTIONS AND ANSWERS

