#### **DAVID PLUMMER & ASSOCIATES**

TRANSPORTATION • CIVII • STRUCTURAL • ENVIRONMENTA

1750 PONCE DE LEON BOULEVARD, CORAL GABLES, FLORIDA 33134 305 447-0900 • FAX: 305 444-4986 • EMAIL: DPA@DPLUMMER.COM

May 29, 2019

Mr. German Hoyos Project Manager Fortune International Group 1300 Brickell Avenue Miami, FL 33131

Phone: (305) 679-5881

E-mail: GHoyos@fortuneintlgroup.com

RE: Old Cutler Road Site Trip Generation Analysis-#14191

Dear German,

David Plummer & Associates prepared a traffic study for the Old Cutler Road Site project located on the southeast corner of Old Cutler Road and SW 184<sup>th</sup> Street in the Town of Cutler Bay, FL (See Exhibit 1). The study was consistent with the methodology previously discussed with and approved by the Town of Cutler Bay and Miami-Dade County. The study was reviewed and the findings accepted by Cutler Bay and their traffic consultant. At the time, the project proposed 30 single family homes, and access consisted of a full access two-way driveway accessing Old Cutler Road south of SW 184<sup>th</sup> Street, and a two-way right-in/right-out only driveway accessing SW 184<sup>th</sup> Street east of Old Cutler Road. The applicant is re-submitting a request for approval with a revised plan proposing 29 single family dwelling units. Access will be limited to the full access two-way driveway accessing Old Cutler Road south of SW 184<sup>th</sup> Street. The proposed site plan is included in *Attachment A*. The purpose of this letter is to address the traffic impacts associated with the proposed changes in the site plan.

The analysis undertaken in the traffic study was performed for the following analysis scenarios:

- Existing year: based on traffic counts taken at study roadways and intersections adjusted to reflect peak hour conditions.
- Future Background Traffic Project build-out year without project trips: A background growth rate was used for all roadway segments and intersections. In addition, traffic associated with the following approved committed developments was used:



### OLD CUTLER ROAD SITE





## EXHIBIT 1 LOCATION MAP



- Shops of Cutler Bay:
   54,817 Square Feet Supermarket
   18,800 Square Feet Specialty Retail
   2,000 Square Feet High Turnover Restaurant
   9,000 Square Feet (2) Drive-In Banks
- Mater Academy: 1,200 students; and,
  Palmer Trinity School: 1,150 students.
- Future Traffic Project build-out year with project trips: Trips associated with the proposed 30 single family dwelling units was added to future traffic conditions without project to obtain total traffic.

The traffic study established trip generation for the original project using the Institute of Transportation Engineers (ITE) <u>Trip Generation Manual</u>, 9<sup>th</sup> Edition. This manual provides gross trip generation rates and/or equations by land use type. These rates and equations estimate vehicle trip ends at a free-standing site's driveways. The trip generation is summarized in Exhibit 2.

**Exhibit 2 Original Project Trip Generation Summary** 

| ITE Land Use                    | Size/Units | Daily<br>Vehicle | AM Pe | ak Hour<br>Trips | Vehicle | PM Pe   | ak Hour<br>Trips | Vehicle    |
|---------------------------------|------------|------------------|-------|------------------|---------|---------|------------------|------------|
| Designation <sup>1</sup>        |            | Trips            | In    | Out              | Total   | In      | Out              | Total      |
|                                 |            |                  | 8     | 23               | 31      | 23      | 13               | 36         |
| Single Family<br>(Land Use 210) | 30 DU      | 347              | T =   | 0.70(x) +        | 9.74    | Ln(T) = | 0.90 <i>Ln</i> ( | (x) + 0.51 |
|                                 |            |                  | 25% I | n 7              | 75% Out | 63% ]   | n                | 37% Out    |
| Net External Ti                 | -th-       | 347              | 8     | 23               | 31      | 23      | 13               | 36         |

Based on ITE Trip Generation Manual, Ninth Edition

Since the original study was submitted to and accepted by Cutler Bay, ITE has released Trip Generation Manual, 10<sup>th</sup> Edition providing significantly expanded and enhanced data. Trip generation for the proposed 29 dwelling units was estimated using rates and/or equations published in ITE's *Trip Generation Manual*, 10<sup>th</sup> Edition. Worksheets are also provided in Attachenment B. The trip generation is provided in Exhibit 3.



**Exhibit 3 Proposed Project Trip Generation Summary** 

| Proposed ITE Land               | Size/Units    | Daily Vehicle | AM Pe  | ak Hour     | Ve hicle | PM Pe    | ak Hour V  | e hicle    |
|---------------------------------|---------------|---------------|--------|-------------|----------|----------|------------|------------|
| Use Designation <sup>1</sup>    | Size/Units    | Trips         | In     | Out         | Total    | In       | Out        | Total      |
| Girata Daniila                  |               |               | 6      | 19          | 25       | 20       | 11         | 31         |
| Single Family<br>(Land Use 210) | <b>2</b> 9 DU | 333           | T =    | 0.71(x) + 4 | 1.80     | Ln (T) = | 0.96 Ln (: | (x) + 0.20 |
| (Land Ose 210)                  |               |               | 25% In | 75% Out     |          | 63% In   | 37% Out    |            |
| Net External Tr                 | ips           | 333           | 6      | 19          | 25       | 20       | 11         | 31         |

<sup>&</sup>lt;sup>1</sup>Based on ITE Trip Generation Manual, 10th Edition

The results of the trip generation analysis indicate that the new proposed development represents a decrease in daily, am peak hour, and pm peak hour trips.

The elimination of the driveway accessing SW 184<sup>th</sup> Street would impact the Old Cutler Road/SW 184<sup>th</sup> Street intersections and the Old Cutler Road Driveway. The revised project trip distribution and assignment are graphically portrayed in Exhibit 4. Intersection capacity analysis was performed for these two intersections using Synchro. Worksheets are provided in Attachment C. The results are summarized in Exhibit 5.

Exhibit 5
Intersection Capacity Analysis Summary

| Intersection                                    | Trafic<br>Control | AM Peak<br>LOS | PM Peak<br>LOS |
|-------------------------------------------------|-------------------|----------------|----------------|
| Old Cutler Road<br>/SW 184 <sup>th</sup> Street | Signal            | С              | D              |
| Old Cutler Road<br>/Project Driveway            | Signal            | C              | С              |

Results of intersection analysis for future conditions with project show that the overall level of service for both intersections will continue to operate within the LOS standards adopted by the Town of Cutler Bay.

dp@









## EXHIBIT 4 Project Trip Distribution & Assignment



In conclusion, the revised development plan is projected to generate less daily, am peak hour and pm peak hour vehicle trips than the previous plan reflected in the traffic study. Furthermore, intersections will continue to operate at the same levels of service as projected and continue to meet adopted level of service standards. Therefore, the conclusions in the traffic study previously submitted to and approved by the Town of Cutler Bay are still valid for the revised plan.

We stand ready to provide any support needed for this project. Should you have any questions or comments, please call me at (305) 447-0900.

Sincerely

Juan Espinosa, PE

## Site Plan



# ATTACHMENT B Trip Generation

### Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 159 Avg. Num. of Dwelling Units: 264

Directional Distribution: 50% entering, 50% exiting

#### **Vehicle Trip Generation per Dwelling Unit**

| Average Rate | Range of Rates | Standard Deviation |
|--------------|----------------|--------------------|
| 9.44         | 4.81 - 19.39   | 2.10               |

#### **Data Plot and Equation**



Trip Generation Manual, 10th Edition • Institute of Transportation Engineers

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 173

Avg. Num. of Dwelling Units: 219

Directional Distribution: 25% entering, 75% exiting

#### **Vehicle Trip Generation per Dwelling Unit**

| Average Rate | Range of Rates | Standard Deviation |
|--------------|----------------|--------------------|
| 0.74         | 0.33 - 2.27    | 0.27               |

#### **Data Plot and Equation**



Trip Generation Manual, 10th Edition • Institute of Transportation Engineers

### Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 190

Avg. Num. of Dwelling Units:

Directional Distribution: 63% entering, 37% exiting

#### **Vehicle Trip Generation per Dwelling Unit**

| Average Rate | Range of Rates | Standard Deviation |
|--------------|----------------|--------------------|
| 0.99         | 0.44 - 2.98    | 0.31               |

#### **Data Plot and Equation**



Trip Generation Manual, 10th Edition • Institute of Transportation Engineers

# Synchro

AM PEAK HOUR 05/21/2019

|                                                         | ۶          | <b>→</b>     | *    | 1           | 4          | 4            | 1    | †           | ~      | 1    | +    | 1    |
|---------------------------------------------------------|------------|--------------|------|-------------|------------|--------------|------|-------------|--------|------|------|------|
| Movement                                                | EBL        | EBT          | EBR  | WBL         | WBT        | WBR          | NBL  | NBT         | NBR    | SBL  | SBT  | SBR  |
| Lane Configurations                                     | 7          | B            |      | 5           | 1          | 7            | 7    | 1           |        | 7    | ₽    |      |
| Traffic Volume (veh/h)                                  | 200        | 141          | 43   |             | 4          | 1            | 124  | 478         | 112    | 5    | 359  | 396  |
| Future Volume (veh/h)                                   | 200        | 141          | 43   | 5           | 4          | 1            | 124  | 478         | 112    | 5    | 359  | 396  |
| Number                                                  | 3          | 8            | 18   | 7           | 4          | 14           | 1    | 6           | 16     | 5    | 2    | 12   |
| Initial Q (Qb), veh                                     | 0          | 0            | 0    | 0           | 0          | 0            | 0    | 0           | 0      | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)                                     | 1.00       |              | 1.00 | 1.00        |            | 1.00         | 1.00 |             | 0.98   | 1.00 |      | 1.00 |
| Parking Bus, Adj                                        | 1.00       | 1.00         | 1.00 | 1.00        | 1.00       | 1.00         | 1.00 | 1.00        | 1.00   | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow, veh/h/ln                                  | 1863       | 1863         | 1900 | 1863        | 1863       | 1937         | 1863 | 1863        | 1900   | 1863 | 1863 | 1900 |
| Adj Flow Rate, veh/h                                    | 225        | 158          | 48   | - 6         | 4          | 0            | 139  | 537         | 126    | 6    | 403  | 445  |
| Adj No. of Lanes                                        | 1          | 1            | 0    | 1           | 1          | 1            | 1    | 1           | 0      | 1    | 1    | 0    |
| Peak Hour Factor                                        | 0.89       | 0.89         | 0.89 | 0.89        | 0.89       | 0.89         | 0.89 | 0.89        | 0.89   | 0.89 | 0.89 | 0.89 |
| Percent Heavy Veh, %                                    | 2          | 2            | 2    | 2           | 2          | 2            | 2    | 2           | 2      | 2    | 2    | 2    |
| Cap, veh/h                                              | 286        | 243          | 74   | 122         | 329        | 291          | 381  | 1082        | 254    | 509  | 581  | 642  |
| Arrive On Green                                         | 0.18       | 0.18         | 0.18 | 0.18        | 0.18       | 0.00         | 0.03 | 0.74        | 0.74   | 0.01 | 0.72 | 0.72 |
| Sat Flow, veh/h                                         | 1407       | 1372         | 417  | 1171        | 1863       | 1647         | 1774 | 1454        | 341    | 1774 | 808  | 893  |
| Grp Volume(v), veh/h                                    | 225        | 0            | 206  | 6           | 4          | 0            | 139  | 0           | 663    | 6    | 0    | 848  |
| Grp Sat Flow(s),veh/h/ln                                | 1407       | 0            | 1789 | 1171        | 1863       | 1647         | 1774 | 0           | 1796   | 1774 | 0    | 1701 |
| Q Serve(g_s), s                                         | 28.3       | 0.0          | 19.3 | 0.9         | 0.3        | 0.0          | 3.6  | 0.0         | 27.0   | 0.2  | 0.0  | 50.2 |
| Cycle Q Clear(g_c), s                                   | 28.6       | 0.0          | 19.3 | 20.1        | 0.3        | 0.0          | 3.6  | 0.0         | 27.0   | 0.2  | 0.0  | 50.2 |
| Prop In Lane                                            | 1.00       |              | 0.23 | 1.00        |            | 1.00         | 1.00 |             | 0.19   | 1.00 |      | 0.52 |
| Lane Grp Cap(c), veh/h                                  | 286        | 0            | 316  | 122         | 329        | 291          | 381  | 0           | 1336   | 509  | 0    | 1223 |
| V/C Ratio(X)                                            | 0.79       | 0.00         | 0.65 | 0.05        | 0.01       | 0.00         | 0.37 | 0.00        | 0.50   | 0.01 | 0.00 | 0.69 |
| Avail Cap(c_a), veh/h                                   | 327        | 0            | 368  | 155         | 383        | 338          | 413  | 0           | 1336   | 585  | 0    | 1223 |
| HCM Platoon Ratio                                       | 1.00       | 1.00         | 1.00 | 1.00        | 1.00       | 1.00         | 1.00 | 1.00        | 1.00   | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)                                      | 1.00       | 0.00         | 1.00 | 1.00        | 1.00       | 0.00         | 1.00 | 0.00        | 1.00   | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh                                | 72.9       | 0.0          | 68.9 | 78.3        | 61.1       | 0.0          | 15.2 | 0.0         | 9.4    | 8.2  | 0.0  | 14.1 |
| Incr Delay (d2), s/veh                                  | 11.2       | 0.0          | 3.6  | 0.2         | 0.0        | 0.0          | 0.2  | 0.0         | 1.3    | 0.0  | 0.0  | 3.2  |
| Initial Q Delay(d3),s/veh                               | 0.0        | 0.0          | 0.0  | 0.0         | 0.0        | 0.0          | 0.0  | 0.0         | 0.0    | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(95%),veh/ln                                | 17.5       | 0.0          | 15.0 | 0.5         | 0.3        | 0.0          | 4.6  | 0.0         | 19.8   | 0.1  | 0.0  | 32.5 |
| LnGrp Delay(d),s/veh                                    | 84.1       | 0.0          | 72.6 | 78.5        | 61.1       | 0.0          | 15.4 | 0.0         | 10.7   | 8.2  | 0.0  | 17.4 |
| LnGrp LOS                                               | F          |              | Е    | Е           | E          |              | В    |             | В      | Α    |      | В    |
| Approach Vol, veh/h                                     |            | 431          |      |             | 10         |              |      | 802         |        |      | 854  |      |
| Approach Delay, s/veh                                   |            | 78.6         |      |             | 71.5       |              |      | 11.5        |        |      | 17.3 |      |
| Approach LOS                                            |            | E            |      |             | E          |              |      | В           |        |      | В    |      |
| Timer                                                   | 1          | 2            | 3    | 4           | 5          | 6            | 7    | 8           |        |      |      |      |
| HIPMANN.                                                | 1          | 2            | •    | 4           | 5          | 6            |      | 8           |        | _    | _    | _    |
| Assigned Phs                                            |            |              |      |             | 4.3        |              |      | 36.8        |        |      |      |      |
| Phs Duration (G+Y+Rc), s                                | 8.7<br>3.0 | 134.5<br>5.0 |      | 36.8<br>5.0 | 3.0        | 138.9<br>5.0 |      | 5.0         |        |      |      |      |
| Change Period (Y+Rc), s                                 |            |              |      |             | 9.0        | 121.0        |      | 37.0        |        |      |      |      |
| Max Green Setting (Gmax), s                             | 9.0        | 121.0        |      | 37.0        |            |              |      |             |        |      |      |      |
| Max Q Clear Time (g_c+l1), s<br>Green Ext Time (p_c), s | 5.6<br>0.1 | 52.2<br>2.7  |      | 22.1<br>0.0 | 2.2<br>0.0 | 29.0<br>1.7  |      | 30.6<br>1.2 |        |      |      |      |
|                                                         | 0.1        | £11          |      | 0.0         | 0.0        | 1.7          |      | 1,2         | -NEURO |      |      |      |
| Intersection Summary HCM 2010 Ctrl Delay                |            |              | 27.9 |             |            |              |      |             |        |      |      |      |
| HCM 2010 LOS                                            |            |              | Z1.5 |             |            |              |      |             |        |      |      |      |
| FIGNIZUTU EGG                                           |            |              | U    |             |            |              |      |             |        |      |      |      |

|                              | ۶     | <b>→</b> | *    | 1    | <b>←</b> | 4     | 1    | †    | ~    | 1    | <b>↓</b> | 1     |
|------------------------------|-------|----------|------|------|----------|-------|------|------|------|------|----------|-------|
| Movement                     | EBL   | EBT      | EBR  | WBL  | WBT      | WBR   | NBL  | NBT  | NBR  | SBL  | SBT      | SBR   |
| Lane Configurations          | N.    | Î        |      | N.   | <b>↑</b> | 7     | Y    | ĵ∍   |      | T    | - Pa     |       |
| Traffic Volume (veh/h)       | 207   | 12       | 96   | 36   | 71       | 5     | 57   | 499  | 9    | 3    | 906      | 229   |
| Future Volume (veh/h)        | 207   | 12       | 96   | 36   | 71       | 5     | 57   | 499  | 9    | 3    | 906      | 229   |
| Number                       | 3     | 8        | 18   | 7    | 4        | 14    | 1    | 6    | 16   | 5    | 2        | 12    |
| Initial Q (Qb), veh          | 0     | 0        | 0    | 0    | 0        | 0     | 0    | 0    | 0    | 0    | 0        | 0     |
| Ped-Bike Adj(A_pbT)          | 1.00  |          | 1.00 | 1.00 |          | 1.00  | 1.00 |      | 0.98 | 1.00 |          | 0.99  |
| Parking Bus, Adj             | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00  |
| Adj Sat Flow, veh/h/ln       | 1863  | 1863     | 1900 | 1863 | 1863     | 1937  | 1863 | 1863 | 1900 | 1863 | 1863     | 1900  |
| Adj Flow Rate, veh/h         | 220   | 13       | 102  | 38   | 76       | 0     | 61   | 531  | 10   | 3    | 964      | 244   |
| Adj No. of Lanes             | 1     | 1        | 0    | 1    | 1        | 1     | 1    | 1    | 0    | 1    | 1        | 0     |
| Peak Hour Factor             | 0.94  | 0.94     | 0.94 | 0.94 | 0.94     | 0.94  | 0.94 | 0.94 | 0.94 | 0.94 | 0.94     | 0.94  |
| Percent Heavy Veh, %         | 2     | 2        | 2    | 2    | 2        | 2     | 2    | 2    | 2    | 2    | 2        | 2     |
| Cap, veh/h                   | 220   | 32       | 249  | 177  | 326      | 288   | 167  | 1377 | 26   | 605  | 1054     | 267   |
| Arrive On Green              | 0.17  | 0.17     | 0.17 | 0.17 | 0.17     | 0.00  | 0.02 | 0.76 | 0.76 | 0.00 | 0.74     | 0.74  |
| Sat Flow, veh/h              | 1317  | 182      | 1425 | 1270 | 1863     | 1647  | 1774 | 1821 | 34   | 1774 | 1432     | 362   |
| Grp Volume(v), veh/h         | 220   | 0        | 115  | 38   | 76       | 0     | 61   | 0    | 541  | 3    | 0        | 1208  |
| Grp Sat Flow(s),veh/h/ln     | 1317  | 0        | 1606 | 1270 | 1863     | 1647  | 1774 | 0    | 1856 | 1774 | 0        | 1795  |
| Q Serve(g_s), s              | 28.0  | 0.0      | 12.7 | 5.5  | 7.0      | 0.0   | 1.6  | 0.0  | 20.1 | 0.1  | 0.0      | 108.8 |
| Cycle Q Clear(g_c), s        | 35.0  | 0.0      | 12.7 | 18.2 | 7.0      | 0.0   | 1.6  | 0.0  | 20.1 | 0.1  | 0.0      | 108.8 |
| Prop In Lane                 | 1.00  |          | 0.89 | 1.00 |          | 1.00  | 1.00 |      | 0.02 | 1.00 |          | 0.20  |
| Lane Grp Cap(c), veh/h       | 220   | 0        | 281  | 177  | 326      | 288   | 167  | 0    | 1403 | 605  | 0        | 1321  |
| V/C Ratio(X)                 | 1.00  | 0.00     | 0.41 | 0.21 | 0.23     | 0.00  | 0.36 | 0.00 | 0.39 | 0.00 | 0.00     | 0.91  |
| Avail Cap(c_a), veh/h        | 220   | 0        | 281  | 177  | 326      | 288   | 186  | 0    | 1403 | 660  | 0        | 1321  |
| HCM Platoon Ratio            | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00  |
| Upstream Filter(I)           | 1.00  | 0.00     | 1.00 | 1.00 | 1.00     | 0.00  | 1.00 | 0.00 | 1.00 | 1.00 | 0.00     | 1.00  |
| Uniform Delay (d), s/veh     | 88.3  | 0.0      | 73.3 | 81.4 | 71.0     | 0.0   | 40.9 | 0.0  | 8.4  | 7.4  | 0.0      | 21.3  |
| Incr Delay (d2), s/veh       | 60.3  | 0.0      | 1.2  | 0.7  | 0.4      | 0.0   | 0.5  | 0.0  | 0.8  | 0.0  | 0.0      | 11.3  |
| Initial Q Delay(d3),s/veh    | 0.0   | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0   |
| %ile BackOfQ(95%),veh/ln     | 22.4  | 0.0      | 9.7  | 3.5  | 6.6      | 0.0   | 3.9  | 0.0  | 15.9 | 0.1  | 0.0      | 69.9  |
| LnGrp Delay(d),s/veh         | 148.6 | 0.0      | 74.5 | 82.1 | 71.4     | 0.0   | 41.4 | 0.0  | 9.2  | 7.4  | 0.0      | 32.7  |
| LnGrp LOS                    | F     |          | E    | F    | E        |       | D    |      | Α    | Α    |          | С     |
| Approach Vol. veh/h          |       | 335      |      |      | 114      |       |      | 602  |      | 100  | 1211     |       |
| Approach Delay, s/veh        |       | 123.2    |      |      | 75.0     |       |      | 12.5 |      |      | 32.6     |       |
| Approach LOS                 |       | F        |      |      | E        |       |      | В    |      |      | С        |       |
| Timer                        | 1_    | 2        | 3    | 4    | 5        | 6     | 7    | 8    | 200  |      |          |       |
| Assigned Phs                 | 1     | 2        |      | 4    | 5        | 6     |      | 8    |      |      |          |       |
| Phs Duration (G+Y+Rc), s     | 7.8   | 152.2    |      | 40.0 | 3.8      | 156.2 |      | 40.0 |      |      |          |       |
| Change Period (Y+Rc), s      | 3.0   | 5.0      |      | 5.0  | 3.0      | 5.0   |      | 5.0  |      |      |          |       |
| Max Green Setting (Gmax), s  | 7.0   | 145.0    |      | 35.0 | 7.0      | 145.0 |      | 35.0 |      |      |          |       |
| Max Q Clear Time (g_c+l1), s | 3.6   | 110.8    |      | 20.2 | 2.1      | 22.1  |      | 37.0 |      |      |          |       |
| Green Ext Time (p_c), s      | 0.0   | 4.8      |      | 0.4  | 0.0      | 1.3   |      | 0.0  |      |      |          |       |
| Intersection Summary         |       |          |      |      |          |       |      |      |      |      |          |       |
| HCM 2010 Ctrl Delay          | 3     |          | 42.8 |      |          |       |      |      |      |      |          |       |
| HCM 2010 LOS                 |       |          | D    |      |          |       |      |      |      |      |          |       |

AM PEAK HOUR 05/21/2019

| Intersection           |                |        |           |        |        |      |  |
|------------------------|----------------|--------|-----------|--------|--------|------|--|
| Int Delay, s/veh       | 0.3            |        |           | -      |        |      |  |
|                        |                | MIDD   | MOT       | MDD    | CDI    | CDT  |  |
| Movement               | WBL            | WBR    | NBT       | NBR    | SBL    | SBT  |  |
| Lane Configurations    | 7              | 1      | <b>\$</b> | 201    |        | 4    |  |
| Traffic Vol, veh/h     | 3              | 16     | 864       | 1      | 5      | 435  |  |
| Future Vol, veh/h      | 3              | 16     | 864       | 1      | 5      | 435  |  |
| Conflicting Peds, #/hr | 0              | 0      | 0         | 0      | 0      | _ 0  |  |
| Sign Control           | Stop           | Stop   | Free      | Free   | Free   | Free |  |
| RT Channelized         |                | None   | -         | None   |        | None |  |
| Storage Length         | 0              | 0      | VAC       | -      | -      | V2V  |  |
| Veh in Median Storage  |                | -      | 0         |        |        | 0    |  |
| Grade, %               | 0              | -      | 0         | -      | -      | 0    |  |
| Peak Hour Factor       | 92             | 92     | 92        | 92     | 92     | 92   |  |
| Heavy Vehicles, %      | 2              | 2      | 2         | 2      | 2      | 2    |  |
| Mvmt Flow              | 3              | 17     | 939       | 1      | 5      | 473  |  |
|                        |                |        |           |        |        |      |  |
| Major/Minor            | Minor1         | I.     | Major1    |        | Major2 | _    |  |
|                        |                |        |           |        |        | 0    |  |
| Conflicting Flow All   | 1423           | 940    | 0         | 0      | 940    | 0    |  |
| Stage 1                | 940            |        | *         | ٠      |        |      |  |
| Stage 2                | 483            | - 0.00 | -         |        | 4.40   | -    |  |
| Critical Hdwy          | 6.42           | 6.22   |           | *      | 4.12   |      |  |
| Critical Hdwy Stg 1    | 5.42           |        | -         |        | -      |      |  |
| Critical Hdwy Stg 2    | 5.42           | -      |           |        | 3      |      |  |
| Follow-up Hdwy         | 3.518          |        | -         | -      | 2.218  | -    |  |
| Pot Cap-1 Maneuver     | 150            | 320    |           |        | 729    |      |  |
| Stage 1                | 380            | -      | -         | -      | -      | -    |  |
| Stage 2                | 620            |        |           |        |        |      |  |
| Platoon blocked, %     |                |        | -         | -      |        | -    |  |
| Mov Cap-1 Maneuver     | 149            | 320    | •         | -      | 729    |      |  |
| Mov Cap-2 Maneuver     | 149            | -      | -         | -      | -      | -    |  |
| Stage 1                | 377            |        |           |        |        |      |  |
| Stage 2                | 620            | -      | -         | -      | -      | -    |  |
|                        |                |        |           |        |        |      |  |
| Approach               | WB             |        | NB        |        | SB     | _    |  |
| Approach               | CALL PROPERTY. | _      | A Control | _      | -      |      |  |
| HCM Control Delay, s   | 18.9           |        | 0         |        | 0.1    |      |  |
| HCM LOS                | С              |        |           |        |        |      |  |
|                        |                |        |           |        |        |      |  |
| Minor Lane/Major Mvn   | nt             | NBT    | NBRV      | VBLn1V | VBLn2  | SBL  |  |
| Capacity (veh/h)       |                | 3      | 2         | 149    | 320    | 729  |  |
| HCM Lane V/C Ratio     |                | -      |           | 0.022  |        |      |  |
| HCM Control Delay (s)  |                |        | - 6       | 29.7   | 16.9   | 10   |  |
| HCM Lane LOS           |                | -      |           | D      | C      | A    |  |
| HCM 95th %tile Q(veh   | )              | -      | 2         | 0.1    | 0.2    | 0    |  |
|                        | 1              |        |           | 0.7    |        | //=/ |  |

PM PEAK HOUR 05/21/2019

| Intersection                           | -         |       |        |        |        |        |  |
|----------------------------------------|-----------|-------|--------|--------|--------|--------|--|
| Int Delay, s/veh                       | 0.3       |       |        |        |        |        |  |
|                                        |           | MDD   | MOT    | NBR    | CDI    | CDT    |  |
| Movement Configurations                | WBL       | WBR   | NBT    | NOK    | SBL    | SBT    |  |
| Lane Configurations                    | 2         | 9     | 455    | 3      | 17     | 919    |  |
| Traffic Vol, veh/h Future Vol, veh/h   | 2         | 9     | 455    | 3      | 17     | 919    |  |
|                                        | 0         | 0     | 400    | 0      | 0      | 919    |  |
| Conflicting Peds, #/hr<br>Sign Control | Stop      |       | Free   | Free   | Free   | Free   |  |
| RT Channelized                         | Slop<br>- | Stop  | riee - | None   | riee - |        |  |
| Storage Length                         | 0         | 0     | 1 5    | NOTIC  |        | None - |  |
| Veh in Median Storage                  |           | -     | 0      |        |        | 0      |  |
| Grade, %                               | 0         | -     | 0      |        |        | 0      |  |
| Peak Hour Factor                       | 92        | 92    | 92     | 92     | 92     | 92     |  |
|                                        | 92        | 2     | 2      | 92     | 2      | 92     |  |
| Heavy Vehicles, % Mvmt Flow            | 2         | 10    | 495    | 3      | 18     | 999    |  |
| IVIVIIIL FIOW                          | 2         | 10    | 490    | 3      | 10     | 999    |  |
|                                        |           |       |        |        |        |        |  |
| Major/Minor                            | Minor1    | 1     | Major1 |        | Vajor2 |        |  |
| Conflicting Flow All                   | 1532      | 497   | 0      | 0      | 498    | 0      |  |
| Stage 1                                | 497       | 21    | -      |        |        |        |  |
| Stage 2                                | 1035      | -     |        | -      | -      | -      |  |
| Critical Hdwy                          | 6.42      | 6.22  |        |        | 4.12   |        |  |
| Critical Hdwy Stg 1                    | 5.42      | -     | -      |        | -      | -      |  |
| Critical Hdwy Stg 2                    | 5.42      | (3)   |        |        |        |        |  |
| Follow-up Hdwy                         | 3.518     | 3.318 | -      |        | 2.218  | -      |  |
| Pot Cap-1 Maneuver                     | 128       | 573   |        | -      | 1066   |        |  |
| Stage 1                                | 611       |       |        | _      | -      | -      |  |
| Stage 2                                | 342       |       | -      | -      |        |        |  |
| Platoon blocked, %                     |           |       |        |        |        | -      |  |
| Mov Cap-1 Maneuver                     | 123       | 573   | -      |        | 1066   |        |  |
| Mov Cap-2 Maneuver                     | 123       |       | -      |        |        | -      |  |
| Stage 1                                | 588       |       |        |        |        |        |  |
| Stage 2                                | 342       | -     | -      | -      | -      | -      |  |
|                                        |           |       |        |        |        |        |  |
| ×                                      | WHEN      |       | 2100   |        | O.P.   |        |  |
| Approach                               | WB        |       | NB     |        | SB     |        |  |
| HCM Control Delay, s                   | 15.7      |       | 0      |        | 0.2    |        |  |
| HCM LOS                                | С         |       |        |        |        |        |  |
|                                        |           |       |        |        |        |        |  |
| Minor Lane/Major Myn                   | nt        | NBT   | NBRV   | VBLn1V | VBLn2  | SBL    |  |
| Capacity (veh/h)                       |           | - 1   | -      |        | 573    | 1066   |  |
| HCM Lane V/C Ratio                     |           | -     |        | 0.018  |        |        |  |
| HCM Control Delay (s                   | )         | 31    |        | 34.8   | 11.4   | 8.4    |  |
| HCM Lane LOS                           |           | -     |        | D      | В      | A      |  |
| HCM 95th %tile Q(veh                   | 1)        | - 5   | - 3    | 0.1    | 0.1    | 0.1    |  |
|                                        | 7         |       |        | 5.1    | 0.,    |        |  |
|                                        |           |       |        |        |        |        |  |